Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39.306
Filtrar
1.
Methods Mol Biol ; 2787: 257-263, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38656495

RESUMEN

Here, we propose a method to convert the organic nitrogen in maize kernels into ammonia in solution and then chlorinate it to prepare monochloride salts, which can form an oxidatively coupled blue-green mixture with sodium salicylate and sodium dichloroisocyanurate. The concentration of ammonium ions in the blue-green mixture can then be determined in the solution, and finally the protein content in maize kernels can be calculated from the nitrogen content.


Asunto(s)
Colorimetría , Grano Comestible , Proteínas de Plantas , Zea mays , Colorimetría/métodos , Proteínas de Plantas/análisis , Proteínas de Plantas/metabolismo , Grano Comestible/química , Zea mays/química , Zea mays/metabolismo , Nitrógeno/química , Semillas/química , Semillas/metabolismo
2.
Sci Total Environ ; 927: 172147, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38569966

RESUMEN

Soil organic matter (SOM) plays a pivotal role in enhancing physical and biological characteristics of soil. Humic substances constitute a substantial proportion of SOM and their increase can improve crop yields and promote agricultural sustainability. While previous research has primarily assessed the influence that humic acids (HAs) derived from natural water have on soil structure, our study focuses on the impact of HAs on soil aggregation under different fertilizer regimes. During the summer cropping season, maize was cultivated under organic and synthetic fertilizer treatments. The organic fertilizer treatment utilized barley (Hordeum vulgare L.) and hairy vetch (Vicia villosa R.) as an organic amendment five days prior to maize planting. The synthetic treatment included a synthetic fertilizer (NPK) applied at South Korea's recommended rates. The organic treatment resulted in significant improvements in the soil aggregates and stability (mean weight diameter, MWD; p < 0.05) compared to the synthetic fertilizer application. These improvements could be primarily attributed to the increased quantity and quality of HAs in the soil derived from the organic amendment. The amount of extracted HAs in the organic treatment was nearly twice that of the synthetic treatment. Additionally, the organic treatment had a 140 % larger MWD and a 40 % increase in total phenolic content compared to the synthetic treatment. The organic treatment also had an increased macronutrient uptake (p < 0.001), an 11 % increase in aboveground maize biomass, and a 21 % increase in grain yield relative to the synthetic treatment. Thus, the enhancement of HA properties through the incorporation of fresh organic manure can both directly and indirectly increase crop productivity.


Asunto(s)
Fertilizantes , Sustancias Húmicas , Suelo , Zea mays , Sustancias Húmicas/análisis , Suelo/química , Zea mays/crecimiento & desarrollo , República de Corea , Agricultura/métodos
3.
Nat Commun ; 15(1): 3488, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664394

RESUMEN

Elucidating the relationship between non-coding regulatory element sequences and gene expression is crucial for understanding gene regulation and genetic variation. We explored this link with the training of interpretable deep learning models predicting gene expression profiles from gene flanking regions of the plant species Arabidopsis thaliana, Solanum lycopersicum, Sorghum bicolor, and Zea mays. With over 80% accuracy, our models enabled predictive feature selection, highlighting e.g. the significant role of UTR regions in determining gene expression levels. The models demonstrated remarkable cross-species performance, effectively identifying both conserved and species-specific regulatory sequence features and their predictive power for gene expression. We illustrated the application of our approach by revealing causal links between genetic variation and gene expression changes across fourteen tomato genomes. Lastly, our models efficiently predicted genotype-specific expression of key functional gene groups, exemplified by underscoring known phenotypic and metabolic differences between Solanum lycopersicum and its wild, drought-resistant relative, Solanum pennellii.


Asunto(s)
Arabidopsis , Aprendizaje Profundo , Regulación de la Expresión Génica de las Plantas , Solanum lycopersicum , Sorghum , Zea mays , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Sorghum/genética , Sorghum/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Zea mays/genética , Secuencias Reguladoras de Ácidos Nucleicos/genética , Genoma de Planta , Variación Genética , Especificidad de la Especie
4.
BMC Plant Biol ; 24(1): 329, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664610

RESUMEN

BACKGROUND: Advancement in agricultural biotechnology has resulted in increasing numbers of commercial varieties of genetically modified (GM) crops worldwide. Though several databases on GM crops are available, these databases generally focus on collecting and providing information on transgenic crops rather than on screening strategies. To overcome this, we constructed a novel tool named, Genetically Modified Organisms Identification Tool (GMOIT), designed to integrate basic and genetic information on genetic modification events and detection methods. RESULTS: At present, data for each element from 118 independent genetic modification events in soybean, maize, canola, and rice were included in the database. Particularly, GMOIT allows users to customize assay ranges and thus obtain the corresponding optimized screening strategies using common elements or specific locations as the detection targets with high flexibility. Using the 118 genetic modification events currently included in GMOIT as the range and algorithm selection results, a "6 + 4" protocol (six exogenous elements and four endogenous reference genes as the detection targets) covering 108 events for the four crops was established. Plasmids pGMOIT-1 and pGMOIT-2 were constructed as positive controls or calibrators in qualitative and quantitative transgene detection. CONCLUSIONS: Our study provides a simple, practical tool for selecting, detecting, and screening strategies for a sustainable and efficient application of genetic modification.


Asunto(s)
Productos Agrícolas , Soja , Oryza , Plantas Modificadas Genéticamente , Productos Agrícolas/genética , Plantas Modificadas Genéticamente/genética , Oryza/genética , Soja/genética , Zea mays/genética , Transgenes , Brassica napus/genética
5.
BMC Plant Biol ; 24(1): 338, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664642

RESUMEN

Proper pericarp thickness protects the maize kernel against pests and diseases, moreover, thinner pericarp improves the eating quality in fresh corn. In this study, we aimed to investigate the dynamic changes in maize pericarp during kernel development and identified the major quantitative trait loci (QTLs) for maize pericarp thickness. It was observed that maize pericarp thickness first increased and then decreased. During the growth and formation stages, the pericarp thickness gradually increased and reached the maximum, after which it gradually decreased and reached the minimum during maturity. To identify the QTLs for pericarp thickness, a BC4F4 population was constructed using maize inbred lines B73 (recurrent parent with thick pericarp) and Baimaya (donor parent with thin pericarp). In addition, a high-density genetic map was constructed using maize 10 K SNP microarray. A total of 17 QTLs related to pericarp thickness were identified in combination with the phenotypic data. The results revealed that the heritability of the thickness of upper germinal side of pericarp (UG) was 0.63. The major QTL controlling UG was qPT1-1, which was located on chromosome 1 (212,215,145-212,948,882). The heritability of the thickness of upper abgerminal side of pericarp (UA) was 0.70. The major QTL controlling UA was qPT2-1, which was located on chromosome 2 (2,550,197-14,732,993). In addition, a combination of functional annotation, DNA sequencing analysis and quantitative real-time PCR (qPCR) screened two candidate genes, Zm00001d001964 and Zm00001d002283, that could potentially control maize pericarp thickness. This study provides valuable insights into the improvement of maize pericarp thickness during breeding.


Asunto(s)
Mapeo Cromosómico , Sitios de Carácter Cuantitativo , Zea mays , Sitios de Carácter Cuantitativo/genética , Zea mays/genética , Zea mays/anatomía & histología , Zea mays/crecimiento & desarrollo , Semillas/genética , Semillas/crecimiento & desarrollo , Semillas/anatomía & histología , Fenotipo , Cromosomas de las Plantas/genética , Polimorfismo de Nucleótido Simple
6.
PeerJ ; 12: e17087, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38623496

RESUMEN

Background: Spodoptera frugiperda (FAW) is a pest that poses a significant threat to corn production worldwide, causing millions of dollars in losses. The species has evolved into two strains (corn and rice) that differ in their genetics, reproductive isolation, and resistance to insecticides and Bacillus thuringiensis endotoxins. The microbiota plays an important role in insects' physiology, nutrient acquisition, and response to chemical and biological controls. Several studies have been carried out on FAW microbiota from larvae guts using laboratory or field samples and a couple of studies have analyzed the corn strain microbiota across its life cycle. This investigation reveals the first comparison between corn strain (CS) and rice strain (RS) of FAW during different developmental insect stages and, more importantly, endosymbiont detection in both strains, highlighting the importance of studying both FAW populations and samples from different stages. Methods: The composition of microbiota during the life cycle of the FAW corn and rice strains was analyzed through high-throughput sequencing of the bacterial 16S rRNA gene using the MiSeq system. Additionally, culture-dependent techniques were used to isolate gut bacteria and the Transcribed Internal Spacer-ITS, 16S rRNA, and gyrB genes were examined to enhance bacterial identification. Results: Richness, diversity, and bacterial composition changed significantly across the life cycle of FAW. Most diversity was observed in eggs and males. Differences in gut microbiota diversity between CS and RS were minor. However, Leuconostoc, A2, Klebsiella, Lachnoclostridium, Spiroplasma, and Mucispirilum were mainly associated with RS and Colidextribacter, Pelomonas, Weissella, and Arsenophonus to CS, suggesting that FAW strains differ in several genera according to the host plant. Firmicutes and Proteobacteria were the dominant phyla during FAW metamorphosis. Illeobacterium, Ralstonia, and Burkholderia exhibited similar abundancies in both strains. Enterococcus was identified as a conserved taxon across the entire FAW life cycle. Microbiota core communities mainly consisted of Enterococcus and Illeobacterium. A positive correlation was found between Spiroplasma with RS (sampled from eggs, larvae, pupae, and adults) and Arsenophonus (sampled from eggs, larvae, and adults) with CS. Enterococcus mundtii was predominant in all developmental stages. Previous studies have suggested its importance in FAW response to B. thuringensis. Our results are relevant for the characterization of FAW corn and rice strains microbiota to develop new strategies for their control. Detection of Arsenophonus in CS and Spiroplasma in RS are promising for the improvement of this pest management, as these bacteria induce male killing and larvae fitness reduction in other Lepidoptera species.


Asunto(s)
Bacillus thuringiensis , Microbiota , Oryza , Animales , Masculino , Spodoptera/genética , Zea mays/genética , Oryza/genética , ARN Ribosómico 16S/genética , Estadios del Ciclo de Vida , Larva/genética , Bacillus thuringiensis/genética , Microbiota/genética
7.
BMC Public Health ; 24(1): 1096, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38643084

RESUMEN

BACKGROUND: Pesticide poisoning is a major public health problem in Thailand and is the result of intensive inappropriate and unsafe use of pesticides. This analytical cross-sectional study aimed to determine the factors affecting safe pesticide-use behaviors among farm plant agriculturists in northeastern Thailand. METHODS: The study sample included 427 farm plant agriculturists in Loei Province, northeastern Thailand. Individuals were randomly selected by a multistage random sampling technique. The following data were collected via a self-administered questionnaire consisting of 8 parts: (1) sociodemographic characteristics, (2) knowledge about pesticide use, (3) perceived severity of impact from pesticide use among farm plant agriculturists, (4) perceived susceptibility to pesticide use, (5) perceived self-efficacy in the modification of safe pesticide-use behaviors, (6) perceived outcome of the modification of safe pesticide-use behaviors, (7) social support, and (8) safe pesticide-use behaviors. Frequencies, percentages, means, standard deviations, and multiple regression analyses were employed for data analysis. RESULTS: The majority of participants (79.4%) had high scores for safe pesticide-use behaviors among farm plant agriculturists (scores of 112-150). Factors that significantly affected safe pesticide-use behaviors included knowledge about pesticide use (ß = 0.282), social support (ß = 0.217), reading information from pesticide labels before pesticide use (ß = 0.207), perceived self-efficacy (ß = 0.186), female sex (ß = -0.140), rice farmer status (ß = 0.129), corn farmer status (ß = 0.127), perceived susceptibility (ß = 0.126), having received information from the internet (ß = -0.124), and perceived severity (ß = -0.098). Together, these 10 factors were found to explain 32.5% of the safe pesticide-use behaviors among farm plant agriculturists. CONCLUSIONS: Our findings indicate that there is a need to increase the number of promotional activities related to the safe use of pesticides through social support and training, with the aim of increasing the overall level of knowledge, perceived self-efficacy, perceived susceptibility, and modification of the perceived impact severity of pesticide use. Thus, relevant agencies should promote and support the safe use of pesticides by farm plant agriculturists. This study revealed that the factors affecting safe pesticide-use behaviors among farm plant agriculturists included knowledge about pesticide use, social support, reading pesticide container labels, perceived self-efficacy in the modification of pesticide-use behaviors, sex, rice farmer status, corn farmer status, perceived susceptibility to pesticide use, having received information from the internet, and perceived severity of impact from pesticide use.


Asunto(s)
Exposición Profesional , Plaguicidas , Humanos , Granjas , Agricultura , Tailandia/epidemiología , Estudios Transversales , Agricultores , Zea mays , Conocimientos, Actitudes y Práctica en Salud
8.
Environ Microbiol Rep ; 16(2): e13249, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38634243

RESUMEN

Aspergillus flavus is the most frequently identified producer of aflatoxins. Non-aflatoxigenic members of the A. flavus L strains are used in various continents as active ingredients of bioprotectants directed at preventing aflatoxin contamination by competitive displacement of aflatoxin producers. The current research examined the genetic diversity of A. flavus L strain across southern Europe to gain insights into the population structure and evolution of this species and to evaluate the prevalence of genotypes closely related to MUCL54911, the active ingredient of AF-X1. A total of 2173L strain isolates recovered from maize collected across Greece, Spain, and Serbia in 2020 and 2021 were subjected to simple sequence repeat (SSR) genotyping. The analysis revealed high diversity within and among countries and dozens of haplotypes shared. Linkage disequilibrium analysis indicated asexual reproduction and clonal evolution of A. flavus L strain resident in Europe. Moreover, haplotypes closely related to MUCL54911 were found to belong to the same vegetative compatibility group (VCG) IT006 and were relatively common in all three countries. The results indicate that IT006 is endemic to southern Europe and may be utilized as an aflatoxin mitigation tool for maize across the region without concern for potential adverse impacts associated with the introduction of an exotic microorganism.


Asunto(s)
Aflatoxinas , Aspergillus flavus , Aflatoxinas/genética , Zea mays , Grecia , España , Serbia
9.
PLoS One ; 19(4): e0294863, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38630672

RESUMEN

Diversity analysis using molecular markers serves as a powerful tool in unravelling the intricacies of inclusivity within various populations and is an initial step in the assessment of populations and the development of inbred lines for host plant resistance in maize. This study was conducted to assess the genetic diversity and population structure of 242 newly developed S3 inbred lines using 3,305 single nucleotide polymorphism (SNP) markers and to also assess the level of homozygosity achieved in each of the inbred lines. A total of 1,184 SNP markers were found highly informative, with a mean polymorphic information content (PIC) of 0.23. Gene diversity was high among the inbred lines, ranging from 0.04 to 0.50, with an average of 0.27. The residual heterozygosity of the 242 S3 inbred lines averaged 8.8%, indicating moderately low heterozygosity levels among the inbred lines. Eighty-four percent of the 58,322 pairwise kinship coefficients among the inbred lines were near zero (0.00-0.05), with only 0.3% of them above 0.50. These results revealed that many of the inbred lines were distantly related, but none were redundant, suggesting each inbred line had a unique genetic makeup with great potential to provide novel alleles for maize improvement. The admixture-based structure analysis, principal coordinate analysis, and neighbour-joining clustering were concordant in dividing the 242 inbred lines into three subgroups based on the pedigree and selection history of the inbred lines. These findings could guide the effective use of the newly developed inbred lines and their evaluation in quantitative genetics and molecular studies to identify candidate lines for breeding locally adapted fall armyworm tolerant varieties in Ghana and other countries in West and Central Africa.


Asunto(s)
Polimorfismo de Nucleótido Simple , Zea mays , Animales , Zea mays/genética , Spodoptera , Genotipo , Fitomejoramiento , Variación Genética
10.
Sci Rep ; 14(1): 9151, 2024 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-38644368

RESUMEN

Limited commercial quality protein maize (QPM) varieties with low grain yield potential are currently grown in Eastern and Southern Africa (ESA). This study was conducted to (i) assess the performance of single-cross QPM hybrids that were developed from elite inbred lines using line-by-tester mating design and (ii) estimate the general (GCA) and specific (SCA) combining ability of the QPM inbred lines for grain yield, agronomic and protein quality traits. One hundred and six testcrosses and four checks were evaluated across six environments in ESA during 2015 and 2016. Significant variations (P ≤ 0.01) were observed among environments, genotypes and genotype by environment interaction (GEI) for most traits evaluated. Hybrids H80 and H104 were the highest-yielding, most desirable, and stable QPM hybrids. Combining ability analysis showed both additive and non-additive gene effects to be important in the inheritance of grain yield. Additive effects were more important for agronomic and protein quality traits. Inbred lines L19 and L20 depicted desirable GCA effects for grain yield. Various other inbred lines with favorable GCA effects for agronomic traits, endosperm modification, and protein quality traits were identified. These inbred lines could be utilized for breeding desirable QPM cultivars. The QPM hybrids identified in this study could be commercialized after on-farm verification to replace the low-yielding QPM hybrids grown in ESA.


Asunto(s)
Fitomejoramiento , Zea mays , Zea mays/genética , Zea mays/metabolismo , Zea mays/crecimiento & desarrollo , Fitomejoramiento/métodos , África Austral , Grano Comestible/genética , Grano Comestible/crecimiento & desarrollo , Grano Comestible/metabolismo , África Oriental , Genotipo , Cruzamientos Genéticos , Endogamia , Fenotipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
11.
BMC Plant Biol ; 24(1): 304, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38644487

RESUMEN

Biochar is a promising solution to alleviate the negative impacts of salinity stress on agricultural production. Biochar derived from food waste effect was investigated on three plant species, Medicago sativa, Amaranthus caudatus, and Zea mays, under saline environments. The results showed that biochar improved significantly the height by 30%, fresh weight of shoot by 35% and root by 45% of all three species compared to control (saline soil without biochar adding), as well as enhanced their photosynthetic pigments and enzyme activities in soil. This positive effect varied significantly between the 3 plants highlighting the importance of the plant-biochar interactions. Thus, the application of biochar is a promising solution to enhance the growth, root morphology, and physiological characteristics of plants under salt-induced stress.


Asunto(s)
Amaranthus , Carbón Orgánico , Medicago sativa , Suelo , Zea mays , Amaranthus/efectos de los fármacos , Amaranthus/crecimiento & desarrollo , Amaranthus/fisiología , Zea mays/crecimiento & desarrollo , Zea mays/efectos de los fármacos , Zea mays/fisiología , Medicago sativa/efectos de los fármacos , Medicago sativa/crecimiento & desarrollo , Medicago sativa/fisiología , Suelo/química , Salinidad , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/efectos de los fármacos , Fotosíntesis/efectos de los fármacos
12.
Trop Anim Health Prod ; 56(3): 114, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38561441

RESUMEN

This study aimed to evaluate the costs of using banana peel (BP) and sweet potato vine (SPV) in rabbit diets. BP and SPV were chosen to replace maize and alfalfa hay, because, in addition to the ingredients having similar nutritional characteristics, they are among the most expensive ingredients in rabbit diets. Data were obtained through a biological assay carried out in the Cuniculture Laboratory of the Universidade Federal de Santa Maria, Santa Maria, RS, Brazil. Fifty New Zealand white rabbits, weaned at 35 days of age, were fed during the growth phase (35 to 84 days) with increasing levels of BP and SPV, replacing maize and alfalfa hay (T0, T25, T50, T75 and T100% replacement). A diet containing 100% replacement (T100) had the lowest cost per kilogram, which was R$ 1.18/kg, while the controlled diet was 57% more expensive, costing R$ 2.08/kg. The total operating cost to produce a rabbit with control treatment was R$10.93/head and at T100, it was R$6.51/head. The animal income for a live rabbit was R$ 24.08 and R$ 23.95 in treatments T0 and T100, respectively. Regarding the gain margin per animal (GMA), in TO it was R$ 13.16 while in T100 it was R$ 17.44, therefore the GMA was 32.55% higher when using the T100 diet. In conclusion, it is more economical and feasible to feed rabbits with diets containing 100% BP and SPV, replacing maize and alfalfa hay.


Asunto(s)
Ipomoea batatas , Musa , Conejos , Animales , Dieta/veterinaria , Zea mays , Destete , Alimentación Animal/análisis , Fenómenos Fisiológicos Nutricionales de los Animales
13.
Mol Biol Rep ; 51(1): 554, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38642178

RESUMEN

BACKGROUND: The Lateral Organ Boundaries Domain (LBD) gene family is a family of plant-specific transcription factors (TFs) that are widely involved in processes such as lateral organ formation, stress response, and nutrient metabolism. However, the function of LBD genes in maize remains poorly understood. METHODS AND RESULTS: In this study, a total of 49 ZmLBD genes were identified at the genome-wide level of maize, they were classified into nine branches based on phylogenetic relationships, and all of them were predicted to be nuclear localized. The 49 ZmLBD genes formed eight pairs of segmental duplicates, and members of the same branches' members had similar gene structure and conserved motif composition. The promoters of ZmLBD genes contain multiple types of cis-acting elements. In addition, by constructing the regulatory network of ZmLBD and other genes and miRNAs, 12 and 22 ZmLBDs were found to be involved in the gene regulatory network and miRNA regulatory network, respectively. The expression pattern analysis suggests that ZmLBD genes may be involved in different biological pathways, and drought stress induced the expressions of two inbred lines. CONCLUSIONS: The findings enhance our comprehension of the potential roles of the ZmLBD gene family in maize growth and development, which is pivotal for genetic enhancement and breeding efforts pertaining to this significant crop.


Asunto(s)
Genoma de Planta , Zea mays , Genoma de Planta/genética , Familia de Multigenes , Filogenia , Fitomejoramiento , Regulación de la Expresión Génica de las Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrés Fisiológico/genética , Perfilación de la Expresión Génica
14.
PLoS One ; 19(4): e0301633, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38625854

RESUMEN

Urban agriculture may be an avenue to help alleviate strain on the global production of staple crops like corn (Zea mays), but significant knowledge gaps exist regarding the optimization of staple crop production in urban settings, and especially in arid urban settings where different challenges exist for crop success. We sought to assess abiotic and biotic factors that impact sweet corn production in six arid urban agricultural plots with varying levels of shade stress, a known inhibitor of corn production. Corn successfully reached maturity in 50% of the studied plots (n = 18). Microbial richness and diversity were uniformly high in all plot soils and not indicated as a hinderance to corn production nor correlated with corn success. Multiple corn success metrics were positively correlated with average daytime light intensity (r = 0.74 to 0.84) and soil organic matter (r = 0.77 to 0.89), suggesting that these factors are critical aspects of successful corn production. In plots that did not receive optimal light exposure, exceptional soil health and morning vs afternoon sun exposure offset at least some degree of shade stress in these arid urban environments. Corn success metrics were negatively correlated with soil calcium, magnesium, sodium and sulfate (r = -0.71 to -0.90), suggesting that minimizing or mitigating the buildup of salt constituents in soils is critical for successful corn production. Optimizing staple crop production in arid urban agricultural settings supports food chain stability and social and economic security of local communities. This work suggests abiotic and biotic drivers of corn success which can be utilized for crop optimization in these environments.


Asunto(s)
Agricultura , Zea mays , Suelo , Producción de Cultivos , Productos Agrícolas
15.
Spectrochim Acta A Mol Biomol Spectrosc ; 314: 124203, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38565047

RESUMEN

This study investigates the challenges encountered in utilizing portable near-infrared (NIR) spectrometers in agriculture, specifically in developing predictive models with high accuracy and robust generalization abilities despite limited spectral resolution and small sample sizes. The research concentrates on the near-infrared spectra of corn feed, utilizing spectral processing techniques and CNNs to precisely estimate crude protein content. Five preprocessing methods were implemented alongside two-dimensional (2D) correlation spectroscopy, resulting in the development of both one-dimensional (1D) and 2D regression models. A comparative analysis of these models in predicting crude protein content demonstrated that 1D-CNNs exhibited superior predictive performance within the 1D category. For the 2D models, CropNet and CropResNet were utilized, with CropResNet demonstrating more accurate and superior predictive capabilities. Overall, the integration of 2D correlation spectroscopy with suitable preprocessing techniques in deep learning models, particularly the 2D CropResNet, proved to be more precise in predicting the crude protein content in corn feed. This finding emphasis the potential of this approach in the portable spectrometer market.


Asunto(s)
Aprendizaje Profundo , Espectroscopía Infrarroja Corta , Espectroscopía Infrarroja Corta/métodos , Zea mays , Proteínas , Agricultura
16.
PLoS One ; 19(4): e0296447, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38635552

RESUMEN

The aim of this study was to develop and validate regression models to predict the chemical composition and ruminal degradation parameters of corn silage by near-infrared spectroscopy (NIR). Ninety-four samples were used to develop and validate the models to predict corn silage composition. A subset of 23 samples was used to develop and validate models to predict ruminal degradation parameters of corn silage. Wet chemistry methods were used to determine the composition values and ruminal degradation parameters of the corn silage samples. The dried and ground samples had their NIR spectra scanned using a poliSPECNIR 900-1700 model NIR sprectrophotometer (ITPhotonics S.r.l, Breganze, IT.). The models were developed using regression by partial least squares (PLS), and the ordered predictor selection (OPS) method was used. In general, the regression models obtained to predict the corn silage composition (P>0.05), except the model for organic matter (OM), adequately estimated the studied properties. It was not possible to develop prediction models for the potentially degradable fraction in the rumen of OM and crude protein and the degradation rate of OM. The regression models that could be obtained to predict the ruminal degradation parameters showed correlation coefficient of calibration between 0.530 and 0.985. The regression models developed to predict CS composition accurately estimated the CS composition, except the model for OM. The NIR has potential to be used by nutritionists as a rapid prediction tool for ruminal degradation parameters in the field.


Asunto(s)
Ensilaje , Zea mays , Animales , Ensilaje/análisis , Espectroscopía Infrarroja Corta , Rumen/metabolismo , Digestión , Fermentación , Dieta
17.
PLoS One ; 19(4): e0300864, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38635849

RESUMEN

Chia (Salvia hispanica L.) seed (CS) and Pumpkin (Cucurbita moschata) seed (PS) are used in ruminant diets as energy sources. The current experiment studied the impact of dietary inclusion of CS and PS on nutrient intake and digestibility, milk yield, and milk composition of dairy sheep. Twelve primiparous Texel × Suffolk ewes [70 ± 5 days in milk (DIM); 0.320 ± 0.029 kg milk yield] were distributed in a 4 × 3 Latin square design and fed either a butter-based control diet [CON; 13 g/kg dry matter] or two diets with 61 g/kg DM of either CS or PS. Dietary inclusion of CS and PS did not alter live weight (p >0.1) and DM intake (p >0.1). However, compared to the CON, dietary inclusion of both CS and PS increased the digestibility of neutral detergent fiber (p <0.001) and acid detergent lignin (p < 0.001). Milk production (p = 0.001), fat-corrected milk (p < 0.001), and feed efficiency (p < 0.001) were enhanced with PS, while the highest milk protein yield (p < 0.05) and lactose yield (p < 0.001) were for CS-fed ewes. Compared to the CON diet, the ingestion of either CS and/or PS decreased (p < 0.001) the C16:0 in milk. Moreover, both CS and PS tended to enhance the content of C18:3n6 (p > 0.05) and C18:3n3 (p > 0.05). Overall short-term feeding of CS and/or PS (up to 6.1% DM of diet) not only maintains the production performance and digestibility of nutrients but also positively modifies the milk FA composition.


Asunto(s)
Cucurbita , Animales , Femenino , Ovinos , Cucurbita/metabolismo , Lactancia , Salvia hispanica , Detergentes , Fibras de la Dieta/metabolismo , Dieta/veterinaria , Semillas/metabolismo , Digestión , Alimentación Animal/análisis , Zea mays/metabolismo , Suplementos Dietéticos/análisis , Rumen/metabolismo
18.
PeerJ ; 12: e17190, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38560461

RESUMEN

Maize production and productivity are affected by drought stress in tropical and subtropical ecologies, as the majority of the area under maize cultivation in these ecologies is rain-fed. The present investigation was conducted to study the physiological and biochemical effects of 24-Epibrassinolide (EBR) as a plant hormone on drought tolerance in maize. Two maize hybrids, Vivek hybrid 9 and Bio 9637, were grown under three different conditions: (i) irrigated, (ii) drought, and (iii) drought+EBR. A total of 2 weeks before the anthesis, irrigation was discontinued to produce a drought-like condition. In the drought+EBR treatment group, irrigation was also stopped, and in addition, EBR was applied as a foliar spray on the same day in the drought plots. It was observed that drought had a major influence on the photosynthesis rate, membrane stability index, leaf area index, relative water content, and leaf water potential; this effect was more pronounced in Bio 9637. Conversely, the activities of antioxidant enzymes such as catalase (CAT), ascorbate peroxidase (APX), and superoxide dismutase (SOD) increased in both hybrids under drought conditions. Specifically, Vivek hybrid 9 showed 74% higher CAT activity under drought conditions as compared to the control. Additionally, EBR application further enhanced the activity of this enzyme by 23% compared to plants under drought conditions. Both hybrids experienced a significant reduction in plant girth due to drought stress. However, it was found that exogenously applying EBR reduced the detrimental effects of drought stress on the plant, and this effect was more pronounced in Bio 9637. In fact, Bio 9637 treated with EBR showed an 86% increase in proline content and a 70% increase in glycine betaine content compared to untreated plants under drought conditions. Taken together, our results suggested EBR enhanced tolerance to drought in maize hybrids. Hence, pre-anthesis foliar application of EBR might partly overcome the adverse effects of flowering stage drought in maize.


Asunto(s)
Brasinoesteroides , Esteroides Heterocíclicos , Estrés Fisiológico , Zea mays , Sequías , Antioxidantes/farmacología , Agua/farmacología
19.
Appl Microbiol Biotechnol ; 108(1): 278, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38558151

RESUMEN

The production of succinic acid from corn stover is a promising and sustainable route; however, during the pretreatment stage, byproducts such as organic acids, furan-based compounds, and phenolic compounds generated from corn stover inhibit the microbial fermentation process. Selecting strains that are resistant to stress and utilizing nondetoxified corn stover hydrolysate as a feedstock for succinic acid production could be effective. In this study, A. succinogenes CICC11014 was selected as the original strain, and the stress-resistant strain A. succinogenes M4 was obtained by atmospheric and room temperature plasma (ARTP) mutagenesis and further screening. Compared to the original strain, A. succinogenes M4 exhibited a twofold increase in stress resistance and a 113% increase in succinic acid production when hydrolysate was used as the substrate. By conducting whole-genome resequencing of A. succinogenes M4 and comparing it with the original strain, four nonsynonymous gene mutations and two upstream regions with base losses were identified. KEY POINTS: • A high-stress-resistant strain A. succinogenes M4 was obtained by ARTP mutation •  The production of succinic acid increased by 113% • The mutated genes of A. succinogenes M4 were detected and analyzed.


Asunto(s)
Actinobacillus , Zea mays , Zea mays/química , Ácido Succínico , Fitomejoramiento , Fermentación , Mutación
20.
Anim Sci J ; 95(1): e13938, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38567743

RESUMEN

We compared the in situ dry matter degradability (ISDMD) and crude protein degradability (ISCPD) of high-moisture corn grain silage and dried corn grains produced in Japan (JHC and JDC, respectively) with corn grains imported from the United States (USC), Brazil (BRC), and South Africa (SAC). The ISDMD values of USC, BAC, and SAC were between those of JHC and JDC, but ISDMD did not differ significantly between USC and SAC. In contrast, ISDMD was lower for BAC than USC and SAC. Overall, our results indicate that ISDMD and ISCPD in the rumen differ between corn grains sources (domestic compared with imported and between production locations), primarily due to differences between the corn varieties represented. In particular, the ISDMD and ISCPD of JHC were greater than those of JDC, and this difference in degradability needs to be considered when using high-moisture corn grain silage as a substitute for dried corn grain as a feed for dairy cattle.


Asunto(s)
Ensilaje , Zea mays , Bovinos , Femenino , Animales , Ensilaje/análisis , Lactancia/metabolismo , Japón , Dieta/veterinaria , Rumen/metabolismo , Alimentación Animal/análisis , Digestión , Leche/metabolismo , Grano Comestible/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...